Optimal Thinning of MCMC Output

Author:

Riabiz Marina,Chen Wilson Ye1,Cockayne Jon2,Swietach Pawel3,Niederer Steven A.4,Mackey Lester5,Oates Chris. J.67

Affiliation:

1. University of Sydney , Sydney , Australia

2. Alan Turing Institute , London , UK

3. Oxford University , Oxford , UK

4. King's College London , London , UK

5. Microsoft Research , Cambridge , USA

6. Alan Turing Institute , London , UK , Newcastle Upon Tyne , UK

7. Newcastle University , London , UK , Newcastle Upon Tyne , UK

Abstract

Abstract The use of heuristics to assess the convergence and compress the output of Markov chain Monte Carlo can be sub-optimal in terms of the empirical approximations that are produced. Typically a number of the initial states are attributed to ‘burn in’ and removed, while the remainder of the chain is ‘thinned’ if compression is also required. In this paper, we consider the problem of retrospectively selecting a subset of states, of fixed cardinality, from the sample path such that the approximation provided by their empirical distribution is close to optimal. A novel method is proposed, based on greedy minimisation of a kernel Stein discrepancy, that is suitable when the gradient of the log-target can be evaluated and approximation using a small number of states is required. Theoretical results guarantee consistency of the method and its effectiveness is demonstrated in the challenging context of parameter inference for ordinary differential equations. Software is available in the Stein Thinning package in Python, R and MATLAB.

Publisher

Oxford University Press (OUP)

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

Reference65 articles.

1. Anatomically accurate high resolution modeling of human whole heart electromechanics: a strongly scalable algebraic multigrid solver method for nonlinear deformation;Augustin;Journal of Computational Physics,2016

2. On a new multivariate two-sample test;Baringhaus;Journal of Multivariate Analysis,2004

3. A Riemann–Stein kernel method;Barp;Bernoulli,2021

4. General methods for monitoring convergence of iterative simulations;Brooks;Journal of Computational and Graphical Statistics,1998

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bayesian inversion of emissions from large urban fire using in situ observations;Atmospheric Environment;2024-04

2. Minimum energy representative points;Journal of Computational and Applied Mathematics;2024-03

3. Online MCMC Thinning with Kernelized Stein Discrepancy;SIAM Journal on Mathematics of Data Science;2024-02-05

4. Nested Rˆ: Assessing the Convergence of Markov Chain Monte Carlo When Running Many Short Chains;Bayesian Analysis;2024-01-01

5. Additive dynamic models for correcting numerical model outputs;Computational Statistics & Data Analysis;2023-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3