Downregulation of MALAT1 is a hallmark of tissue and peripheral proliferative T cells in COVID-19

Author:

Dey Shoumit1ORCID,Ashwin Helen1,Milross Luke2,Hunter Bethany3,Majo Joaquim4,Filby Andrew J3,Fisher Andrew J25,Kaye Paul M1,Lagos Dimitris1ORCID

Affiliation:

1. Hull York Medical School and York Biomedical Research Institute, University of York , York , UK

2. Newcastle University Translational and Clinical Research Unit, Faculty of Medical Sciences, Newcastle University , Newcastle upon Tyne , UK

3. Flow Cytometry Core Facility and Innovation, Methodology and Application Research Theme, Newcastle University Biosciences Institute, Newcastle University , Newcastle upon Tyne , UK

4. Department of Cellular Pathology, Newcastle Upon Tyne Hospitals NHS Foundation Trust , Newcastle upon Tyne , UK

5. Institute of Transplantation, Newcastle upon Tyne Hospitals NHS Foundation Trust Newcastle upon Tyne , UK

Abstract

Abstract T cells play key protective but also pathogenic roles in COVID-19. We studied the expression of long non-coding RNAs (lncRNAs) in COVID-19 T-cell transcriptomes by integrating previously published single-cell RNA sequencing datasets. The long intergenic non-coding RNA MALAT1 was the most highly transcribed lncRNA in T cells, with Th1 cells demonstrating the lowest and CD8+ resident memory cells the highest MALAT1 expression, amongst CD4+ and CD8+ T-cells populations, respectively. We then identified gene signatures that covaried with MALAT1 in single T cells. A significantly higher number of transcripts correlated negatively with MALAT1 than those that correlated. Enriched functional annotations of the MALAT1- anti-correlating gene signature included processes associated with T-cell activation such as cell division, oxidative phosphorylation, and response to cytokine. The MALAT1 anti-correlating gene signature shared by both CD4+ and CD8+ T-cells marked dividing T cells in both the lung and blood of COVID-19 patients. Focussing on the tissue, we used an independent patient cohort of post-mortem COVID-19 lung samples and demonstrated that MALAT1 suppression was indeed a marker of MKI67+ proliferating CD8+ T cells. Our results reveal MALAT1 suppression and its associated gene signature are a hallmark of human proliferating T cells.

Funder

UK Research and Innovations

NIHR UK Coronavirus Immunology Consortium

Wellcome Trust Senior Investigator Award

Publisher

Oxford University Press (OUP)

Subject

Immunology,Immunology and Allergy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3