Discrepancy in sustained efficacy and resistance emergence under human-simulated exposure of cefiderocol against Stenotrophomonas maltophilia between in vitro chemostat and in vivo murine infection models

Author:

Gill Christian M1,Abdelraouf Kamilia1,Oota Merime2,Nakamura Rio2,Kuroiwa Miho3,Gahara Yoshinari3,Takemura Miki4,Yamano Yoshinori5,Nicolau David P16

Affiliation:

1. Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA

2. Shionogi TechnoAdvance Research & Co., Ltd, Osaka, Japan

3. Laboratory for Innovative Therapy Research, Shionogi & Co., Ltd, Osaka, Japan

4. Laboratory for Drug Discovery and Disease Research, Shionogi & Co., Ltd, Osaka, Japan

5. Research Planning Department, Shionogi & Co., Ltd, Osaka, Japan

6. Division of Infectious Diseases, Hartford Hospital, Hartford, CT, USA

Abstract

Abstract Objectives The present study evaluated the sustained kill and the potential for resistance development of Stenotrophomonas maltophilia exposed to a human-simulated exposure of cefiderocol over 72 h in in vitro and in vivo infection models. Methods A total of seven S. maltophilia isolates with cefiderocol MICs of 0.03–0.5 mg/L were utilized. The sustained bactericidal activity compared with the initial inoculum and the appearance of resistance after the 72 h treatment were evaluated in both an in vitro chemostat model (four strains) and an in vivo murine thigh infection model (six strains) under the human-simulated exposure of cefiderocol (2 g every 8 h as a 3 h infusion). Results In the in vitro model, regrowth was observed for three of four tested isolates and resistance emergence (>2-dilution MIC increase) was observed for all of the four test isolates. Conversely, sustained killing over 72 h and no resistance emergence were observed for all of the six tested isolates in the in vivo models. The mechanism of all resistant isolates that appeared only in the in vitro chemostat studies was a mutation in the tonB-exbB-exbD region, which contributes to the energy transduction on the iron transporters. Conclusions The discrepancy in the sustained efficacy and resistance emergence between in vivo and in vitro models appears to be due to the resistance acquisition mechanism caused by mutation in the tonB-exbB-exbD region developing in the enriched media utilized in vitro. These studies reveal the in vivo bactericidal activity and the low potential for development of resistance among Stenotrophomonas evaluated under human-simulated exposures.

Funder

Shionogi Co., Ltd.

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3