Identification and antibiotic susceptibility evaluation of Mycoplasma synoviae isolated from chickens in central China

Author:

Wang Chun,Zhou Naiji,Liu Haopeng,Yang Rongkun,Cui Weitao,Xu Qingrong,Xiao Yuncai,Hu Sishun,Zhou Rui,Li Zili,Zhou ZutaoORCID

Abstract

AbstractMycoplasma synoviae (M. synoviae) infections have become an increasingly serious concern in China because they cause huge economic losses to the poultry industry. Antibiotic treatment is one of control strategies that can be used to contain clinical outbreaks in M. synoviae-free flocks, especially because the bacteria can be transmitted through eggs. To understand M. synoviae infection status in farms of central China and the antibiotic susceptibility of the circulating strains in vivo and in vitro, 485 samples were collected from five provinces from 2019 to 2021. Fifty-two strains were isolated and identified. Determination of the minimum inhibitory concentration (MIC) of eight antibiotics (tylvalosin, tiamulin, tilmicosin, lincomycin, enrofloxacin, chlortetracycline, doxycycline and tylosin) for isolates showed that tylvalosin, doxycycline and tiamulin were effective against 52 clinical isolates (MIC values ≤ 0.0625–0.25 μg/mL, ≤0.0625–1 μg/mL, and 0.25–2 μg/mL, respectively). Tilmicosin, enrofloxacin and lincomycin had high MIC90 values (>32 μg/mL). An artificial M. synoviae infection model was established in chickens for evaluation of the short-term therapeutic effect of these antibiotics. After 5 days of medication, doxycycline (200 mg/L) showed a superior ability to inhibit M. synoviae compared with other groups, as did tylvalosin (200 mg/L). Furthermore, the therapeutic efficacy of tylvalosin (0.4 μg/mL) on intra-embryo-injected M. synoviae was higher than that of tiamulin at the same dose. A combination of MIC values determined in vitro and therapeutic effects observed in vivo revealed that tylvalosin and doxycycline had the best therapeutic effects. Tylvalosin also showed better inhibitory effects on the vertical transmission of M. synoviae than tiamulin.

Funder

Department of Science and Technology, Hubei Provincial People's Government

Earmarked Fund for China Agriculture Research System

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3