Affiliation:
1. State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
2. Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
Abstract
Abstract
Objectives
To investigate the genetic context and transferability of the oxazolidinone resistance genes cfr(D) and optrA in a porcine Vagococcus lutrae isolate.
Methods
V. lutrae isolate BN31 was screened for the presence of known oxazolidinone resistance genes via PCR assays. Conjugation experiments were carried out to assess horizontal transferability of resistance genes. WGS was performed using a combination of Nanopore MinION and Illumina HiSeq platforms. Detection of a translocatable unit (TU) was conducted by PCR.
Results
V. lutrae isolate BN31 harboured the oxazolidinone resistance genes cfr(D) and optrA. The optrA gene, together with the phenicol resistance gene fexA, was located on a novel pseudo-compound transposon, designated Tn7363. Tn7363 was bounded by two copies of the new insertion sequence ISVlu1, which represented a new member of the ISL3 family. A TU, comprising one copy of ISVlu1 and the segment between the two IS elements including the optrA gene, was detected. The cfr(D) gene and an erm(B) gene were identified on the broad-host-range Inc18 plasmid pBN31-cfrD, a pAMβ1-like plasmid. Similar to plasmid pAMβ1, plasmid pBN31-cfrD was conjugative.
Conclusions
To the best of our knowledge, we report the first identification of the cfr(D) and optrA in Vagococcus. Two novel oxazolidinone resistance gene-carrying mobile genetic elements, Tn7363 and pBN31-cfrD, were identified in V. lutrae BN31. Considering their transmission potential, attention should be paid to the risk of transfer of the optrA and cfr(D) genes from V. lutrae to clinically more important bacterial pathogens.
Funder
Natural Science Foundation of Heilongjiang Province of China
German Federal Ministry of Education and Research
Publisher
Oxford University Press (OUP)
Subject
Infectious Diseases,Pharmacology (medical),Pharmacology,Microbiology (medical)
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献