Existence and possible roles of independent non-CpG methylation in the mammalian brain

Author:

Lee Jong-Hun1,Saito Yutaka234,Park Sung-Joon1ORCID,Nakai Kenta14

Affiliation:

1. Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan

2. Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan

3. AIST-Waseda University Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), Tokyo, Japan

4. Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan

Abstract

Abstract Methylated non-CpGs (mCpHs) in mammalian cells yield weak enrichment signals and colocalize with methylated CpGs (mCpGs), thus have been considered byproducts of hyperactive methyltransferases. However, mCpHs are cell type-specific and associated with epigenetic regulation, although their dependency on mCpGs remains to be elucidated. In this study, we demonstrated that mCpHs colocalize with mCpGs in pluripotent stem cells, but not in brain cells. In addition, profiling genome-wide methylation patterns using a hidden Markov model revealed abundant genomic regions in which CpGs and CpHs are differentially methylated in brain. These regions were frequently located in putative enhancers, and mCpHs within the enhancers increased in correlation with brain age. The enhancers with hypermethylated CpHs were associated with genes functionally enriched in immune responses, and some of the genes were related to neuroinflammation and degeneration. This study provides insight into the roles of non-CpG methylation as an epigenetic code in the mammalian brain genome.

Funder

Japan Society for the Promotion of Science

Publisher

Oxford University Press (OUP)

Subject

Genetics,Molecular Biology,General Medicine

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3