Comparison of Hyaluronidase-Mediated Degradation Kinetics of Commercially Available Hyaluronic Acid Fillers In Vitro

Author:

Faivre JimmyORCID,Wu Kevin,Gallet Mélanie,Sparrow Julia,Bourdon François,Gallagher Conor J

Abstract

Abstract Background The ability to degrade hyaluronic acid (HA)-based fillers with hyaluronidase allows for better management of adverse effects and reversal of suboptimal treatment outcomes. Objectives The aim of this study was to compare the enzymatic degradation kinetics of 16 commercially available HA-based fillers, representing 6 manufacturing technologies. Methods In this nonclinical study, a recently developed in vitro multidose hyaluronidase administration protocol was used to induce degradation of HA-based fillers, enabling real-time evaluation of viscoelastic properties under near-static conditions. Each filler was exposed to repeated doses of hyaluronidase at intervals of 5 minutes to reach the degradation threshold of G' ≤ 30 Pa. Results Noticeable differences in degradation characteristics were observed based on the design and technology of different filler classes. Vycross fillers were the most difficult to degrade and the Cohesive Polydensified Matrix filler was the least difficult to degrade. Preserved Network Technology products demonstrated proportional increases in gel degradation time and enzyme volume required for degradation across the individual resilient hyaluronic acid (RHA) products and indication categories. No obvious relationship was observed between gel degradation characteristics and the individual parameters of HA concentration, HA chain length, or the degree of modification of each filler when analyzed separately; however, a general correlation was identified with certain physicochemical properties. Conclusions Manufacturing technology was the most important factor influencing the reversibility of an HA product. An understanding of the differential degradation profiles of commercially available fillers will allow clinicians to select products that offer a higher margin of safety due to their preferential reversibility. Level of Evidence: 4

Funder

Revance Therapeutics, Inc

Teoxane SA

TEOSYAL RHA

Envision Pharma Group

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3