Affiliation:
1. College of Medicine, University of Central Florida, Orlando, FL 32827, USA
2. American Foundation for Aesthetic Medicine, Fruitland Park, FL 34731, USA
3. Merz Aesthetics Inc., Raleigh, NC 27615, USA
Abstract
Accidental arterial embolization of hyaluronic acid (HA) fillers can lead to severe complications, including skin ischemia, blindness, and stroke. Currently, the intra-arterial dispersal and fragmentation behavior of HA gels is unknown but critical to our understanding of the pathomechanism of these injuries. This work introduces the Pulsatile Unit for the Laboratory Simulation of Arterio-embolic Restrictions (PULSAR) and evaluates the intravascular behavior of different HA gels. The fragmentation and dispersal behaviors of four HA gels with distinct rheological properties were evaluated via high-resolution videography and ImageJ particle size and morphology analysis. The gels’ elastic modulus (G′), loss modulus (G″), tan(δ), and HA concentration were subsequently correlated with their intra-arterial behaviors. This study effectively confirms the extensive fragmentation of HA gels upon arterial inoculation, with particle sizes ranging from <50 µm to >1 mm. Gel particle size and morphology correlated most significantly with tan(δ). Conversely, arterial flow rates did not significantly influence gel fragmentation behavior, though the probability of proximal, macrovascular obstruction was affected. Overall, this study validates the PULSAR model for simulation of arterial dynamics and the testing of intravascular filler kinematics. The findings demonstrate the ability of gels to microfragment and disseminate distally, as well as induce partial proximal occlusion depending on gel rheology and arterial flow parameters.