Density Trends and Range Boundary Constraints of Forest Birds Along a Latitudinal Gradient

Author:

Emlen John T.1,DeJong Michael J.1,Jaeger Michael John1,Moermond Timothy C.1,Rusterholz Kurt A.1,White Robin P.2

Affiliation:

1. Department of Zoology, University of Wisconsin, Madison, Wisconsin 53706 USA

2. Department of Geography, University of Wisconsin, Madison, Wisconsin 53706 USA

Abstract

Abstract We plotted the density distributions of 41 land-bird species along a 1,200-km transect spanning 7°28′ (865 km) of latitude through relatively uniform bottomland deciduous forest in middle North America. Standardized counts and observations at 12 survey stations, closely matched in habitat structure and widely distributed along the route, provided population data for all species and indices of total avian foraging pressure (consuming biomass) on each of six major foraging substrates. Density curves for species fluctuated considerably from station to station but tended to be level across range centers and slope peripherally to north and south boundaries at rates of 3-30% per degree of latitude. Substrate foraging pressures declined northward on the aerial and midfoliage substrates and southward on the low-foliage substrate. Summed community densities showed no significant latitudinal trends. We used the distinctive distribution patterns of climate (smooth latitudinal gradients), habitat structure (irregular mosaics of vegetation patches), and competition (reciprocally sloping density gradients) to identify and evaluate the role of these three constraints along the transect. Progressive latitudinal trends in species abundance thus were attributed to climatic factors, irregular station-to-station fluctuations to habitat factors, and inversely sloping density trends in paired profiles to competition. On this basis all species apparently responded to both climatic and habitat factors, and about half of the species showed suggestions of competition. In a correlation analysis across the 12 stations, latitude per se most closely matched density distribution in 12 species, one or another of the habitat parameters in 25 species. We proposed that season length (days available for breeding activity) was the principal constraining attribute of latitude at northern range boundaries, day length (hours available for feeding and provisioning young) at southern boundaries. Boundaries have been essentially stable during the past 50-100 yr in most species, but the northern boundary expanded northward in one species following human-induced habitat enhancement, and temporarily receded southward in another following a winter of severe stress. We attribute this general stability of range boundaries over time to within-population gene flow and the associated peripherally declining mean fitness of phenotypes adapted to central range conditions along radially diverging environmental gradients. We suggest that two boundary lines should be recognized for each species, an inner functional boundary at the line where birth rates drop below death rates, and an outer empirical boundary at the limit of recorded occurrences.

Publisher

Oxford University Press (OUP)

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3