Abstract
AbstractThe trophic interactions between plants, insect herbivores and their predators are complex and prone to trophic cascades. Theory predicts that predators increase plant biomass by feeding on herbivores. However, it remains unclear whether different types of predators regulate herbivores to the same degree, and how intraguild predation impacts these trophic interactions. Specifically, we lack a more comprehensive look at the effects of various groups of predators on a global scale. Here we report a meta-analysis of 486 experiments gathered from 157 publications reporting the effect of insectivorous vertebrates (birds and bats) and ants on abundances of predatory (spiders, ants, others) and herbivorous (chewers and others) arthropods; on arthropod richness and plant damage. Generally, the absence of vertebrate predators led to the increase of predatory arthropods by 18%, herbivorous arthropods by 75%, and plant damage by 47%. In contrast, after the removal of ants, the increase in the abundances of other predatory arthropods did not compensate for missing ants, herbivore arthropods increased their abundances by 53%, and plant damage increased by 146%. The effects of ant exclosures were stronger in communities at lower elevations and latitudes, while we did not detect any clear geographical patterns in the effect of vertebrate exclosures. Neither precipitation nor NDVI had a significant impact on most of the measured effects, and the effect of exclosures was robust for both plant growth forms and different habitat types. We found vertebrate insectivores to be the more dominant predators of arthropods, but we detected that the strength of their trophic cascades was weakened by intraguild predation. On the other hand, we found that although ants were relatively less dominant as predators, and their influence was detectable only in the most productive sites, the effect of trophic cascades on plants they caused was stronger than that of vertebrate insectivores.
Publisher
Cold Spring Harbor Laboratory
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献