Dose response of biochar and wood vinegar on in vitro batch culture ruminal fermentation using contrasting feed substrates

Author:

O’Reilly Grace Celia1,Huo Yuxin1,Meale Sarah Jade2,Chaves Alex V1ORCID

Affiliation:

1. School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, NSW 2006, Australia

2. School of Agriculture and Food Sciences, Faculty of Science, The University of Queensland, Gatton, QLD 4343, Australia

Abstract

Abstract Within Australia, approximately 6.4% of total greenhouse gas emissions are from animal methane (CH4) derived from enteric fermentation. Mitigation of ruminant CH4 is a key concept in support of sustainable agriculture production; dietary manipulations a viable strategy to lower CH4 release during enteric fermentation. In order to determine the effects of dose response of biochar and wood vinegar supplementation on fermentation parameters and CH4 production, this study utilized in vitro batch culture incubations. It is hypothesized that the addition of either biochar or wood vinegar will successfully reduce enteric CH4 emissions without negative modification of other fermentation parameters. Three feed substrates (vegetable mixed ration, maize silage, and winter pasture) were separated into treatments containing either biochar at 0%, 0.5%, 1%, 2%, and 4% DM replacing substrate (w/w basis), or wood vinegar at 0%, 0.25%, 0.5%, 1%, and 2% into incubation media volume (v/v). At 6, 12, and 24 hours after inoculation, total gas volume, and methane (CH4 %) were measured. Volatile fatty acid (VFA) concentrations, media pH, and in vitro dry matter digestibility were measured at 24 hours. Biochar at various dosages had no effect (P > 0.05) on fermentation characteristics other than decreased in vitro dry matter digestibility (IVDMD; P = 0.01) at 2% and 4% (DM basis) inclusion. Similar to biochar, dose response of wood vinegar had no effect on in vitro fermentation characteristics. However, feed substrate had major effects on all fermentation parameters (P = 0.01) where winter pasture > vegetable mixed ration > maize silage for all recorded fermentation characteristics. Biochar and wood vinegar supplementation were ineffectual in mitigating CH4 production or modifying fermentation characteristics, thus rejecting the initial hypothesis. These results suggest the use of biochar is not an effective tool for methane mitigation in ruminant livestock and infers that studies previously reporting success must better define the systemic mechanisms responsible for the reduction in CH4.

Publisher

Oxford University Press (OUP)

Subject

General Veterinary,Animal Science and Zoology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3