Searching for quasi-periodic eruptions using machine learning

Author:

Webbe Robbie1ORCID,Young A J1ORCID

Affiliation:

1. H. H. Wills Physics Laboratory , Tyndall Avenue, Bristol BS8 1TL , UK

Abstract

Abstract Quasi-periodic eruption (QPE) is a rare phenomenon in which the X-ray emission from the nuclei of galaxies shows a series of large amplitude flares. Only a handful of QPEs have been observed but the possibility remains that there are as yet undetected sources in archival data. Given the volume of data available a manual search is not feasible, and so we consider an application of machine learning to archival data to determine whether a set of time-domain features can be used to identify further light curves containing eruptions. Using a neural network and 14 variability measures we are able to classify light curves with accuracies of greater than $94{{\ \rm per\ cent}}$ with simulated data and greater than $98{{\ \rm per\ cent}}$ with observational data on a sample consisting of 12 light curves with QPEs and 52 light curves without QPEs. An analysis of 83 531 X-ray detections from the XMM Serendipitous Source Catalogue allowed us to recover light curves of known QPE sources and examples of several categories of variable stellar objects.

Funder

UKRI

NASA

Publisher

Oxford University Press (OUP)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3