Components of Cowpea Resistance to the Seed Beetle Callosobruchus maculatus (Coleoptera: Chrysomelidae: Bruchinae)

Author:

Messina Frank J1,Lish Alexandra M1,Gompert Zachariah1

Affiliation:

1. Department of Biology, Utah State University, Logan, UT

Abstract

Abstract Cowpea, Vigna unguiculata (L.) Walp., serves as a major source of dietary protein in many tropical and subtropical regions around the world. To identify loci associated with agronomically desirable traits, eight elite cowpea cultivars were systematically inter-crossed for eight generations to yield 305 recombinant inbred lines. Here, we investigated whether these founder parents also possess resistance to the seed beetle Callosobruchus maculatus (F.), a highly destructive post-harvest pest. We estimated larval survival in seeds, egg-to-adult development time, adult mass at emergence, and seed acceptance for oviposition. Survival varied significantly among cowpea cultivars, but the pattern was complicated by an unexpected source of mortality; on three cultivars, mature larvae in a substantial fraction of seeds (20–36%) exited seeds prematurely, and consequently failed to molt into viable adults. Even if such seeds were eliminated from the analysis, survival in the remaining seeds varied from 49 to 92% across the eight parents. Development time and body mass also differed among hosts, with particularly slow larval development on three closely related cultivars. Egg-laying females readily accepted all cultivars except one with a moderately rugose seed coat. Overall, suitability ranks of the eight cultivars depended on beetle trait; a cultivar that received the most eggs (IT82E-18) also conferred low survival. However, one cultivar (IT93K-503-1) was a relatively poor host for all traits. Given the magnitude of variation among parental cultivars, future assays of genotyped recombinant progeny can identify genomic regions and candidate genes associated with resistance to seed beetles.

Funder

Utah Agricultural Experiment Station

Publisher

Oxford University Press (OUP)

Subject

Insect Science,Ecology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3