Transfer of Anolis Locomotor Behavior Across Environments and Species

Author:

Foster Kathleen Lois1ORCID,Selvitella Alessandro Maria23

Affiliation:

1. Department of Biology, Ball State University , 1600 Ashland Ave, IN 47306, USA

2. Department of Mathematical Sciences, Purdue University Fort Wayne , 2101 E. Coliseum Blvd, Fort Wayne, IN 46805, USA

3. eScience Institute, University of Washington , 3910 15th Ave NE, Seattle, WA 98195, USA

Abstract

Abstract Arboreal animals must learn to modulate their movements to overcome the challenges posed by the complexity of their heterogeneous environment, reduce performance failure, and survive. Anolis lizards are remarkable in the apparent ease with which they conquer this heterogeneity, demonstrating an impressive ability to modulate their locomotor behavior to maintain stable locomotion on widely disparate surfaces. Significant progress has been made towards understanding the impact of substrate structure on the behavioral plasticity of arboreal species, but it is unclear whether the same strategies employed to shift between substrates in one context can be employed to shift between those same substrates in a new context. Is the kinematic shift between broad and narrow perches achieved in a similar way on different inclines? Do all species within an ecomorph make similar adjustments? Here, we analyze the limb movements of two trunk-crown Anolis ecomorphs, Anolis carolinensis and Anolis evermanni, running on 6 different surfaces (3 inclinations × 2 perch diameters), from the perspective of Transfer Learning. Transfer learning is that field of machine learning which aims at exploiting the knowledge gained from one task to improve generalization about another, related task. In our setting, we use transfer learning to show that the strategies employed to improve locomotor stability on narrow perches are transferred across environments with different inclines. Further, behaviors used on vertical inclines are shared, and thus transfer well, across perch diameters whereas the relationship between horizontal and intermediate inclines change on different perch diameters, leading to lower transfer learning of shallow inclines across perch diameters. Interestingly, the best incline for transfer of behavior differs between limbs: forelimb models learn best from the vertical incline and hind limb models learn best from horizontal and intermediate inclines. Finally, our results suggest both that subtle differences exist in how A. carolinensis and A. evermanni adjust their behaviors in typical trunk-crown environments and that they may have converged on similar strategies for modulating forelimb behavior on vertical surfaces and hind limb behavior on shallow surfaces. The transfer of behavior is analogous to phenotypic plasticity, which likely plays a key role in the rapid adaptive evolution characteristic of Anolis lizards. This work is an example of how modern statistical methodology can provide an interesting perspective on new biological questions, such as on the role and nuances of behavioral plasticity and the key behaviors that help shape the versatility and rapid evolution of Anolis lizards.

Funder

NSF-Simons Pilot Project Program

Ball State University

Purdue University

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Animal Science and Zoology

Reference43 articles.

1. The genome of the green anole lizard and a comparative analysis with birds and mammals;Alfoldi;Nature,2011

2. Dynamics of geckos running vertically;Autumn;Physiol Zool,2006

3. The scaling of uphill and downhill locomotion in legged animals;Birn-Jeffery;Integr Comp Biol,2014

4. Climbing;Cartmill,1985

5. An introduction to the bootstrap;Efron,1993

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3