Human γδ T cell identification from single-cell RNA sequencing datasets by modular TCR expression

Author:

Song Zheng1,Henze Lara2,Casar Christian23,Schwinge Dorothee2,Schramm Christoph245,Fuss Johannes6,Tan Likai17,Prinz Immo14ORCID

Affiliation:

1. Institute of Systems Immunology, University Medical Center Hamburg-Eppendorf , Falkenried 94, 20251 Hamburg , Germany

2. I. Department of Medicine, University Medical Center Hamburg-Eppendorf , Martinistrasse 52, 20246 Hamburg , Germany

3. Bioinformatics Core, University Medical Center Hamburg-Eppendorf , Martinistrasse 52, 20246 Hamburg , Germany

4. Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf , Martinistrasse 52, 20246 Hamburg , Germany

5. Martin Zeitz Center for Rare Diseases, University Medical Center Hamburg-Eppendorf , Martinistrasse 52, 20246 Hamburg , Germany

6. Center for Translational Neuro- and Behavioral Sciences, Institute of Forensic Psychiatry and Sex Research, University of Duisburg-Essen , Alfredstrasse 68-72, 45130 Essen , Germany

7. Department of Anaesthesia and Intensive Care (AIC), Prince of Wales Hospital, Shatin, The Chinese University of Hong Kong , New Territories, 4/F Main Clinical Block and Trauma Centre, Hong Kong , China

Abstract

Abstract Accurately identifying γδ T cells in large single-cell RNA sequencing (scRNA-seq) datasets without additional single-cell γδ T cell receptor sequencing (sc-γδTCR-seq) or CITE-seq (cellular indexing of transcriptomes and epitopes sequencing) data remains challenging. In this study, we developed a TCR module scoring strategy for human γδ T cell identification (i.e. based on modular gene expression of constant and variable TRA/TRB and TRD genes). We evaluated our method using 5′ scRNA-seq datasets comprising both sc-αβTCR-seq and sc-γδTCR-seq as references and demonstrated that it can identify γδ T cells in scRNA-seq datasets with high sensitivity and accuracy. We observed a stable performance of this strategy across datasets from different tissues and different subtypes of γδ T cells. Thus, we propose this analysis method, based on TCR gene module scores, as a standardized tool for identifying and reanalyzing γδ T cells from 5′-end scRNA-seq datasets.

Funder

German Research Foundation

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Immunology,Immunology and Allergy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3