Unravelling interlanguage facts via explainable machine learning

Author:

Berti Barbara1ORCID,Esuli Andrea2ORCID,Sebastiani Fabrizio2ORCID

Affiliation:

1. Dipartimento di Lingue, Letterature, Culture e Mediazioni, Università degli Studi di Milano , Milano, Italy

2. Istituto di Scienza e Tecnologie dell’Informazione, Consiglio Nazionale delle Ricerche , Pisa, Italy

Abstract

AbstractNative language identification (NLI) is the task of training (via supervised machine learning) a classifier that guesses the native language of the author of a text. This task has been extensively researched in the last decade, and the performance of NLI systems has steadily improved over the years. We focus on a different facet of the NLI task, i.e. that of analysing the internals of an NLI classifier trained by an explainable machine learning (EML) algorithm, in order to obtain explanations of its classification decisions, with the ultimate goal of gaining insight into which linguistic phenomena ‘give a speaker’s native language away’. We use this perspective in order to tackle both NLI and a (much less researched) companion task, i.e. guessing whether a text has been written by a native or a non-native speaker. Using three datasets of different provenance (two datasets of English learners’ essays and a dataset of social media posts), we investigate which kind of linguistic traits (lexical, morphological, syntactic, and statistical) are most effective for solving our two tasks, namely, are most indicative of a speaker’s L1; our experiments indicate that the most discriminative features are the lexical ones, followed by the morphological, syntactic, and statistical features, in this order. We also present two case studies, one on Italian and one on Spanish learners of English, in which we analyse individual linguistic traits that the classifiers have singled out as most important for spotting these L1s; we show that the traits identified as most discriminative well align with our intuition, i.e. represent typical patterns of language misuse, underuse, or overuse, by speakers of the given L1. Overall, our study shows that the use of EML can be a valuable tool for the scholar who investigates interlanguage facts and language transfer.

Funder

European Commission

Publisher

Oxford University Press (OUP)

Subject

Computer Science Applications,Linguistics and Language,Language and Linguistics,Information Systems

Reference74 articles.

1. Advances in Corpus-based Contrastive Linguistics

2. Lexical bundles in learner writing: an analysis of formulaic language in the ALESS learner corpus;Allen;Komaba Journal of English Education,2010

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Explainable Authorship Identification in Cultural Heritage Applications;Journal on Computing and Cultural Heritage;2024-06-24

2. Correction to: Unravelling interlanguage facts via explainable machine learning;Digital Scholarship in the Humanities;2023-05-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3