Explainable Authorship Identification in Cultural Heritage Applications

Author:

Setzu Mattia1ORCID,Corbara Silvia2ORCID,Monreale Anna1ORCID,Moreo Alejandro3ORCID,Sebastiani Fabrizio3ORCID

Affiliation:

1. Università di Pisa, Pisa, Italy

2. Scuola Normale Superiore, Pisa, Italy and Istituto di Scienza e Tecnologie dell’Informazione, Consiglio Nazionale delle Ricerche, Pisa, Italy

3. Consiglio Nazionale delle Ricerche, Pisa, Italy

Abstract

While a substantial amount of work has recently been devoted to improving the accuracy of computational Authorship Identification (AId) systems for textual data, little to no attention has been paid to endowing AId systems with the ability to explain the reasons behind their predictions. This substantially hinders the practical application of AId methods, since the predictions returned by such systems are hardly useful unless they are supported by suitable explanations. In this article, we explore the applicability of existing general-purpose eXplainable Artificial Intelligence (XAI) techniques to AId, with a focus on explanations addressed to scholars working in cultural heritage. In particular, we assess the relative merits of three different types of XAI techniques (feature ranking, probing, factual and counterfactual selection) on three different AId tasks (authorship attribution, authorship verification and same-authorship verification) by running experiments on real AId textual data. Our analysis shows that, while these techniques make important first steps towards XAI, more work remains to be done to provide tools that can be profitably integrated into the workflows of scholars.

Funder

SoBigData++

AI4Media

European Commission

ERC-2018-ADG

Publisher

Association for Computing Machinery (ACM)

Reference76 articles.

1. Charu C. Aggarwal and ChengXiang Zhai. 2012. A survey of text classification algorithms. In Mining Text Data. Charu C. Aggarwal and ChengXiang Zhai (Eds.), Springer, Heidelberg, 163–222.

2. Albert R. Ascoli. 1997. Access to authority: Dante in the epistle to cangrande. In Seminario Dantesco Internazionale/International Dante Seminar 1. Zygmunt G. Baranski (Ed.), Le Lettere, Firenze, 309–52.

3. Luca Azzetta. 2016. Nuova edizione commentata delle opere di Dante, Vol. 5. Salerno Editrice, Roma, IT, Chapter “Epistola XIII”, 271–487.

4. Shane Barratt. 2017. Interpnet: Neural introspection for interpretable deep learning. Retrieved from 10.48550/arXiv.1710.09511

5. Probing Classifiers: Promises, Shortcomings, and Advances

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3