Quantifying the mineral magnetic signature of petroleum systems and their source rocks: a study on the Inner Moray Firth, UK North Sea

Author:

Perkins J R1ORCID,Muxworthy A R12ORCID,Fraser A J1,Hu P3

Affiliation:

1. Department of Earth Science and Engineering, Imperial College London , London SW7 2BP , UK

2. Department of Earth Sciences, University College London , London WC1E 6BS , UK

3. Research School of Earth Sciences, Australian National University , Acton ACT 0200 , Australia

Abstract

SUMMARY This study aims to expand on existing connections between magnetic minerals and hydrocarbons within petroleum systems. Previous studies have focussed on single-source petroleum systems whereas this study, for the first time, analyses a multi-source petroleum system to investigate potential correlations between different kerogen type source rocks and magnetic minerals. To do this, the study investigates the magnetic mineral characteristics of the Inner Moray Firth (IMF), UK North Sea, through room-, low- and high-temperature techniques, and correlates this to published basin and petroleum systems modelling results that show a three-source hydrocarbon mix. Magnetic mineral analysis identifies extensive evidence for magnetite, goethite and siderite, alongside more minor lepidocrocite and iron sulphides. Although we find that magnetite is ubiquitous within the IMF, its abundance is relatively low, and, in contrast, the relatively magnetically weak goethite is more likely the most abundant magnetic mineral throughout the IMF. In agreement with previous studies, we find magnetic enhancement at oil-water contacts (OWCs); however, here, we identify two different magnetic enhancement processes at OWCs in wells, which are dependent on the amount of sulphur available in the local environment. Wells with low levels of sulphur have increasing levels of magnetite towards the OWC, with the magnetic enhancement occurring at the top of the water-saturated section. Sulphur-rich environments display an increase in iron sulphides near the OWC at the bottom of the oil-saturated sediments. Additionally, we confirm the presence of siderite as indicator of upward vertical migration. Combining with petroleum system model predictions, we find direct links between iron hydroxide presence and Type I and II–III kerogen source rocks, and iron sulphide presence with Type II kerogen source rocks. This study shows the potential for further utilization of magnetic mineral analysis within hydrocarbon exploration and petroleum system definition.

Funder

Engineering and Physical Sciences Research Council

British Geological Survey

University of Minnesota

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3