Noise source localization using deep learning

Author:

Zhou Jie1,Mi Binbin1ORCID,Xia Jianghai1,Zhang Hao2,Liu Ya1ORCID,Chen Xinhua1,Guan Bo1,Hong Yu1,Ma Yulong1

Affiliation:

1. Key Laboratory of Geoscience Big Data and Deep Resource of Zhejiang Province, School of Earth Sciences, Zhejiang University , Hangzhou 310058 Zhejiang , China

2. GBA Branch of Aerospace Information Research Institute, Chinese Academy of Sciences , Guangzhou, 510700 Guangdong , China

Abstract

SUMMARY Ambient noise source localization is of great significance for estimating seismic noise source distribution, understanding source mechanisms and imaging subsurface structures. The commonly used methods for source localization, such as the matched field processing and the full-waveform inversion, are time-consuming and not applicable for time-lapse monitoring of the noise source distribution. We propose an efficient alternative of using deep learning for noise source localization. In the neural network, the input data are noise cross-correlation functions and the output are matrices containing the information of noise source distribution. It is assumed that the subsurface structure is a horizontally layered earth model and the model parameters are known. A wavefield superposition method is used to efficiently simulate ambient noise data with quantities of local noise sources labelled as training data sets. We use a weighted binary cross-entropy loss function to address the prediction inaccuracy caused by a sparse label matrix during training. The proposed deep learning framework is validated by synthetic tests and two field data examples. The successful applications to locate an anthropogenic noise source and a carbon dioxide degassing area demonstrate the accuracy and efficiency of the proposed deep learning method for noise source localization, which has great potential for monitoring the changes of the noise source distribution in a survey area.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3