Generalization of Cross-Entropy Loss Function for Image Classification

Author:

Andreieva Valeria,Shvai NadiiaORCID

Abstract

Classification task is one of the most common tasks in machine learning. This supervised learning problem consists in assigning each input to one of a finite number of discrete categories. Classification task appears naturally in numerous applications, such as medical image processing, speech recognition, maintenance systems, accident detection, autonomous driving etc.In the last decade methods of deep learning have proven to be extremely efficient in multiple machine learning problems, including classification. Whereas the neural network architecture might depend a lot on data type and restrictions posed by the nature of the problem (for example, real-time applications), the process of its training (i.e. finding model’s parameters) is almost always presented as loss function optimization problem.Cross-entropy is a loss function often used for multiclass classification problems, as it allows to achieve high accuracy results.Here we propose to use a generalized version of this loss based on Renyi divergence and entropy. We remark that in case of binary labels proposed generalization is reduced to cross-entropy, thus we work in the context of soft labels. Specifically, we consider a problem of image classification being solved by application of convolution neural networks with mixup regularizer. The latter expands the training set by taking convex combination of pairs of data samples and corresponding labels. Consequently, labels are no longer binary (corresponding to single class), but have a form of vector of probabilities. In such settings cross-entropy and proposed generalization with Renyi divergence and entropy are distinct, and their comparison makes sense.To measure effectiveness of the proposed loss function we consider image classification problem on benchmark CIFAR-10 dataset. This dataset consists of 60000 images belonging to 10 classes, where images are color and have the size of 32×32. Training set consists of 50000 images, and the test set contains 10000 images.For the convolution neural network, we follow [1] where the same classification task was studied with respect to different loss functions and consider the same neural network architecture in order to obtain comparable results.Experiments demonstrate superiority of the proposed method over cross-entropy for loss function parameter value α < 1. For parameter value α > 1 proposed method shows worse results than cross-entropy loss function. Finally, parameter value α = 1 corresponds to cross-entropy.

Publisher

National University of Kyiv - Mohyla Academy

Subject

General Medicine

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Interpretable decision support system for tower crane layout planning: A deep learning-oriented approach;Advanced Engineering Informatics;2024-10

2. Noise source localization using deep learning;Geophysical Journal International;2024-05-06

3. Face Emotion Recognition Based on Images Using the Haar-Cascade Front End Approach;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2024

4. ATS-YOLOv7: A Real-Time Multi-Scale Object Detection Method for UAV Aerial Images Based on Improved YOLOv7;Electronics;2023-12-04

5. Deep learning in alloy material microstructures: Application and prospects;Materials Today Communications;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3