ChromLoops: a comprehensive database for specific protein-mediated chromatin loops in diverse organisms

Author:

Zhou Qiangwei12ORCID,Cheng Sheng12,Zheng Shanshan12,Wang Zhenji12,Guan Pengpeng12,Zhu Zhixian12,Huang Xingyu12,Zhou Cong12,Li Guoliang12ORCID

Affiliation:

1. National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University , Wuhan 430070, China

2. Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, Key Laboratory of Smart Farming for Agricultural Animals, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University , Wuhan 430070, China

Abstract

Abstract Chromatin loops (or chromatin interactions) are important elements of chromatin structures. Disruption of chromatin loops is associated with many diseases, such as cancer and polydactyly. A few methods, including ChIA-PET, HiChIP and PLAC-Seq, have been proposed to detect high-resolution, specific protein-mediated chromatin loops. With rapid progress in 3D genomic research, ChIA-PET, HiChIP and PLAC-Seq datasets continue to accumulate, and effective collection and processing for these datasets are urgently needed. Here, we developed a comprehensive, multispecies and specific protein-mediated chromatin loop database (ChromLoops, https://3dgenomics.hzau.edu.cn/chromloops), which integrated 1030 ChIA-PET, HiChIP and PLAC-Seq datasets from 13 species, and documented 1 491 416 813 high-quality chromatin loops. We annotated genes and regions overlapping with chromatin loop anchors with rich functional annotations, such as regulatory elements (enhancers, super-enhancers and silencers), variations (common SNPs, somatic SNPs and eQTLs), and transcription factor binding sites. Moreover, we identified genes with high-frequency chromatin interactions in the collected species. In particular, we identified genes with high-frequency interactions in cancer samples. We hope that ChromLoops will provide a new platform for studying chromatin interaction regulation in relation to biological processes and disease.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3