Novel DNA methylation biomarkers in enhancer regions with chromatin interactions for diagnosis of non‐small‐cell lung cancer

Author:

Zhu Zhixian1,Zhou Qiangwei1,Guan Pengpeng1,Sun Yuanhui1,Li Guoliang1ORCID

Affiliation:

1. Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, Key Laboratory of Smart Farming for Agricultural Animals, 3D Genomics Research Center, College of Informatics Huazhong Agricultural University Wuhan China

Abstract

AbstractLung cancer is the leading cause of cancer‐related deaths worldwide. DNA methylation has been recognized as a potential biomarker for lung cancer diagnosis. Most reported DNA methylation biomarkers focus on promoter regions, leaving enhancer regions largely unexplored. Here, we employed multiomics data to identify DNA methylation biomarkers for non‐small‐cell lung cancer diagnosis. Especially, we linked enhancers to their target genes using long‐range chromatin interactions for biomarker prediction. We discovered two sets of DNA methylation biomarkers: one in promoter regions and another in enhancer regions. Both achieved extremely high sensitivity and specificity in five independent validation data sets. Compared with three other reported biomarker sets, both groups in our study demonstrated better and more robust classification performance in validation data sets. These novel DNA methylation biomarkers may improve lung cancer screening and ultimately contribute to improved clinical outcomes for patients. To our best knowledge, this is the first time to introduce chromatin interactions to link enhancers to their targets for biomarker study, highlighting the potential of enhancer methylation as a complement to current promoter‐based DNA methylation biomarkers. Our approach may have potential applications for other cancer types and could be a valuable direction for future research in the field of cancer biomarker discovery.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3