Affiliation:
1. School of Physics and Astronomy, Institute of Natural Sciences, School of Medicine, Shanghai National Center for Applied Mathematics (SJTU center), Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University , Shanghai 200240, China
2. State Key laboratory for Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200240, China
3. Instrumental Analysis Center, Shanghai Jiao Tong University , Shanghai 200240, China
Abstract
Abstract
Prokaryotic Argonaute proteins (pAgos) widely participate in hosts to defend against the invasion of nucleic acids. Compared with the CRISPR-Cas system, which requires a specific motif on the target and can only use RNA as guide, pAgos exhibit precise endonuclease activity on any arbitrary target sequence and can use both RNA and DNA as guide, thus rendering great potential for genome editing applications. Hitherto, most in-depth studies on the structure-function relationship of pAgos were conducted on thermophilic ones, functioning at ∼60 to 100°C, whose structures were, however, determined experimentally at much lower temperatures (20–33°C). It remains unclear whether these low-temperature structures can represent the true conformations of the thermophilic pAgos under their physiological conditions. The present work studied three pAgos, PfAgo, TtAgo and CbAgo, whose physiological temperatures differ significantly (95, 75 and 37°C). By conducting thorough experimental and simulation studies, we found that thermophilic pAgos (PfAgo and TtAgo) adopt a loosely-packed structure with a partially-melted surface at the physiological temperatures, largely different from the compact crystalline structures determined at moderate temperatures. In contrast, the mesophilic pAgo (CbAgo) assumes a compact crystalline structure at its optimal function temperature. Such a partially-disrupted structure endows thermophilic pAgos with great flexibility both globally and locally at the catalytic sites, which is crucial for them to achieve high DNA-cleavage activity. To further prove this, we incubated thermophilic pAgos with urea to purposely disrupt their structures, and the resulting cleavage activity was significantly enhanced below the physiological temperature, even at human body temperature. Further testing of many thermophilic Agos present in various thermophilic prokaryotes demonstrated that their structures are generally disrupted under physiological conditions. Therefore, our findings suggest that the highly dynamical structure with a partially-melted surface, distinct from the low-temperature crystalline structure, could be a general strategy assumed by thermophilic pAgos to achieve the high DNA-cleavage activity.
Funder
NSF China
National Key Research and Development Program of China
Shanghai Pilot Program for Basic Research-Shanghai Jiao Tong University
Publisher
Oxford University Press (OUP)
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献