Matrix factorization-based data fusion for the prediction of RNA-binding proteins and alternative splicing event associations during epithelial–mesenchymal transition

Author:

Qiu Yushan1,Ching Wai-Ki2,Zou Quan3

Affiliation:

1. College of Mathematics and Statistics, Shenzhen University, 518000 Guangdong, China

2. Department of Mathematics, The University of Hong Kong, Pokfulam Road, Hong Kong

3. Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China

Abstract

Abstract Motivation The epithelial-mesenchymal transition (EMT) is a cellular–developmental process activated during tumor metastasis. Transcriptional regulatory networks controlling EMT are well studied; however, alternative RNA splicing also plays a critical regulatory role during this process. Unfortunately, a comprehensive understanding of alternative splicing (AS) and the RNA-binding proteins (RBPs) that regulate it during EMT remains largely unknown. Therefore, a great need exists to develop effective computational methods for predicting associations of RBPs and AS events. Dramatically increasing data sources that have direct and indirect information associated with RBPs and AS events have provided an ideal platform for inferring these associations. Results In this study, we propose a novel method for RBP–AS target prediction based on weighted data fusion with sparse matrix tri-factorization (WDFSMF in short) that simultaneously decomposes heterogeneous data source matrices into low-rank matrices to reveal hidden associations. WDFSMF can select and integrate data sources by assigning different weights to those sources, and these weights can be assigned automatically. In addition, WDFSMF can identify significant RBP complexes regulating AS events and eliminate noise and outliers from the data. Our proposed method achieves an area under the receiver operating characteristic curve (AUC) of $90.78\%$, which shows that WDFSMF can effectively predict RBP–AS event associations with higher accuracy compared with previous methods. Furthermore, this study identifies significant RBPs as complexes for AS events during EMT and provides solid ground for further investigation into RNA regulation during EMT and metastasis. WDFSMF is a general data fusion framework, and as such it can also be adapted to predict associations between other biological entities.

Funder

National Natural Science Foundation of China

Guangdong Basic and Applied Basic Research Foundation

Natural Science Foundation of Guangdong

Natural Science Foundation of Shenzhen

Hong Kong Research Grant Council General Research Fund

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3