TAD boundary and strength prediction by integrating sequence and epigenetic profile information

Author:

Wang Yunlong1,Liu Yaqi1,Xu Qian1,Xu Yao1,Cao Kai1,Deng Nan1,Wang Ruimin1,Zhang Xueying1,Zheng Ruiqin1,Li Guoliang2,Fang Yaping2

Affiliation:

1. College of Informatics, Huazhong Agricultural University, China

2. College of Informatics, Huazhong Agricultural University, Wuhan, 430070, P. R. China

Abstract

Abstract Topologically associated domains (TADs) are one of the important higher order chromatin structures with various sizes in the eukaryotic genomes. TAD boundaries, as the flanking regions between adjacent domains, can restrict the interactions of regulatory elements, including enhancers and promoters, and are generally dynamic and variable in different cells. However, the influence of sequence and epigenetic profile-based features in the identification of TAD boundaries is largely unknown. In this work, we proposed a method called pTADS (prediction of TAD boundary and strength), to predict TAD boundaries and boundary strength across multiple cell lines with DNA sequence and epigenetic profile information. The performance was assessed in seven cell lines and three TAD calling methods. The results demonstrate that the TAD boundary can be well predicted by the selected shared features across multiple cell lines. Especially, the model can be transferable to predict the TAD boundary from one cell line to other cell lines. The boundary strength can be characterized by boundary score with good performance. The predicted TAD boundary and TAD boundary strength are further confirmed by three Hi-C contact matrix-based methods across multiple cell lines. The codes and datasets are available at https://github.com/chrom3DEpi/pTADS.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3