Deep embedded clustering with multiple objectives on scRNA-seq data

Author:

Li Xiangtao1,Zhang Shixiong2,Wong Ka-Chun2

Affiliation:

1. School of Artificial Intelligence Jilin University, Jilin, China

2. Department of Computer science City University of Hong Kong, Hong Kong SAR

Abstract

Abstract In recent years, single-cell RNA sequencing (scRNA-seq) technologies have been widely adopted to interrogate gene expression of individual cells; it brings opportunities to understand the underlying processes in a high-throughput manner. Deep embedded clustering (DEC) was demonstrated successful in high-dimensional sparse scRNA-seq data by joint feature learning and cluster assignment for identifying cell types simultaneously. However, the deep network architecture for embedding clustering is not trivial to optimize. Therefore, we propose an evolutionary multiobjective DEC by synergizing the multiobjective evolutionary optimization to simultaneously evolve the hyperparameters and architectures of DEC in an automatic manner. Firstly, a denoising autoencoder is integrated into the DEC to project the high-dimensional sparse scRNA-seq data into a low-dimensional space. After that, to guide the evolution, three objective functions are formulated to balance the model’s generality and clustering performance for robustness. Meanwhile, migration and mutation operators are proposed to optimize the objective functions to select the suitable hyperparameters and architectures of DEC in the multiobjective framework. Multiple comparison analyses are conducted on twenty synthetic data and eight real data from different representative single-cell sequencing platforms to validate the effectiveness. The experimental results reveal that the proposed algorithm outperforms other state-of-the-art clustering methods under different metrics. Meanwhile, marker genes identification, gene ontology enrichment and pathology analysis are conducted to reveal novel insights into the cell type identification and characterization mechanisms.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jilin Province

Health and Medical Research Fund

City University of Hong Kong

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Reference57 articles.

1. Single cells make big data: new challenges and opportunities in transcriptomics;Angerer;Current Opinion in Systems Biology,2017

2. Biogeography-based optimization for different economic load dispatch problems;Bhattacharya;IEEE Trans Power Syst,2009

3. Conditional likelihood maximisation: a unifying framework for information theoretic feature selection;Brown;The Journal of Machine Learning Research,2012

4. Integrating single-cell transcriptomic data across different conditions, technologies, and species;Butler;Nat Biotechnol,2018

5. Comprehensive single-cell transcriptional profiling of a multicellular organism;Cao;Science,2017

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3