AVPIden: a new scheme for identification and functional prediction of antiviral peptides based on machine learning approaches

Author:

Pang Yuxuan1ORCID,Yao Lantian1ORCID,Jhong Jhih-Hua1ORCID,Wang Zhuo1ORCID,Lee Tzong-Yi1ORCID

Affiliation:

1. Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, PR China

Abstract

Abstract Antiviral peptide (AVP) is a kind of antimicrobial peptide (AMP) that has the potential ability to fight against virus infection. Machine learning-based prediction with a computational biology approach can facilitate the development of the novel therapeutic agents. In this study, we proposed a double-stage classification scheme, named AVPIden, for predicting the AVPs and their functional activities against different viruses. The first stage is to distinguish the AVP from a broad-spectrum peptide collection, including not only the regular peptides (non-AMP) but also the AMPs without antiviral functions (non-AVP). The second stage is responsible for characterizing one or more virus families or species that the AVP targets. Imbalanced learning is utilized to improve the performance of prediction. The AVPIden uses multiple descriptors to precisely demonstrate the peptide properties and adopts explainable machine learning strategies based on Shapley value to exploit how the descriptors impact the antiviral activities. Finally, the evaluation performance of the proposed model suggests its ability to predict the antivirus activities and their potential functions against six virus families (Coronaviridae, Retroviridae, Herpesviridae, Paramyxoviridae, Orthomyxoviridae, Flaviviridae) and eight kinds of virus (FIV, HCV, HIV, HPIV3, HSV1, INFVA, RSV, SARS-CoV). The AVPIden gives an option for reinforcing the development of AVPs with the computer-aided method and has been deployed at http://awi.cuhk.edu.cn/AVPIden/.

Funder

National Natural Science Foundation of China

Guangdong Province Basic and Applied Basic Research Fund

Ganghong Young Scholar Development Fund

Warshel Institute for Computational Biology

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3