ADENet: a novel network-based inference method for prediction of drug adverse events

Author:

Yu Zhuohang,Wu ZengruiORCID,Li Weihua,Liu Guixia,Tang YunORCID

Abstract

Abstract Identification of adverse drug events (ADEs) is crucial to reduce human health risks and improve drug safety assessment. With an increasing number of biological and medical data, computational methods such as network-based methods were proposed for ADE prediction with high efficiency and low cost. However, previous network-based methods rely on the topological information of known drug-ADE networks, and hence cannot make predictions for novel compounds without any known ADE. In this study, we introduced chemical substructures to bridge the gap between the drug-ADE network and novel compounds, and developed a novel network-based method named ADENet, which can predict potential ADEs for not only drugs within the drug-ADE network, but also novel compounds outside the network. To show the performance of ADENet, we collected drug-ADE associations from a comprehensive database named MetaADEDB and constructed a series of network-based prediction models. These models obtained high area under the receiver operating characteristic curve values ranging from 0.871 to 0.947 in 10-fold cross-validation. The best model further showed high performance in external validation, which outperformed a previous network-based and a recent deep learning-based method. Using several approved drugs as case studies, we found that 32–54% of the predicted ADEs can be validated by the literature, indicating the practical value of ADENet. Moreover, ADENet is freely available at our web server named NetInfer (http://lmmd.ecust.edu.cn/netinfer). In summary, our method would provide a promising tool for ADE prediction and drug safety assessment in drug discovery and development.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Shanghai Municipal Education Commission

Shanghai Post-doctoral Excellence Program

Shanghai Sailing Program

China Postdoctoral Science Foundation

111 Project

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3