Abstract
Abstract
Identification of adverse drug events (ADEs) is crucial to reduce human health risks and improve drug safety assessment. With an increasing number of biological and medical data, computational methods such as network-based methods were proposed for ADE prediction with high efficiency and low cost. However, previous network-based methods rely on the topological information of known drug-ADE networks, and hence cannot make predictions for novel compounds without any known ADE. In this study, we introduced chemical substructures to bridge the gap between the drug-ADE network and novel compounds, and developed a novel network-based method named ADENet, which can predict potential ADEs for not only drugs within the drug-ADE network, but also novel compounds outside the network. To show the performance of ADENet, we collected drug-ADE associations from a comprehensive database named MetaADEDB and constructed a series of network-based prediction models. These models obtained high area under the receiver operating characteristic curve values ranging from 0.871 to 0.947 in 10-fold cross-validation. The best model further showed high performance in external validation, which outperformed a previous network-based and a recent deep learning-based method. Using several approved drugs as case studies, we found that 32–54% of the predicted ADEs can be validated by the literature, indicating the practical value of ADENet. Moreover, ADENet is freely available at our web server named NetInfer (http://lmmd.ecust.edu.cn/netinfer). In summary, our method would provide a promising tool for ADE prediction and drug safety assessment in drug discovery and development.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Shanghai Municipal Education Commission
Shanghai Post-doctoral Excellence Program
Shanghai Sailing Program
China Postdoctoral Science Foundation
111 Project
Publisher
Oxford University Press (OUP)
Subject
Molecular Biology,Information Systems
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献