Harnessing Chemical Space Neural Networks to Systematically Annotate GPCR ligands

Author:

Hansson Frederik G.ORCID,Madsen Niklas Gesmar,Hansen Lea G.ORCID,Jakočiūnas Tadas,Lengger Bettina,Keasling Jay D.,Jensen Michael K.,Acevedo-Rocha Carlos G.,Jensen Emil D.ORCID

Abstract

AbstractDrug-target interaction databases comprise millions of manually curated data points, yet there are missed opportunities for repurposing established interaction networks to infer novel drug-target interactions by interpolating on chemical neighborhoods. To address this gap, we collect drug-target interactions on 128 unique GPCRs across 187K molecules and establish an all-vs-all chemical space network, which can be efficiently calculated and parameterised as a graph with 32.4 billion potential edges. Beyond testing state-of-the-art machine learning approaches, we develop a chemical space neural network (CSNN) to infer drug activity classes with up to 98% accuracy, by leveraging the graph of chemical neighbourhoods. We combine this virtual library screen with a fast and cheap experimental platform to validate our predictions and to discover 14 novel drug-GPCR interactions. Altogether, our platform integrates virtual library screening and experimental validation to facilitate fast and efficient coverage of missing drug-target interactions.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3