Aperture: alignment-free detection of structural variations and viral integrations in circulating tumor DNA

Author:

Liu Hongchao1,Yin Huihui2,Li Guangyu1,Li Junling3,Wang Xiaoyue1

Affiliation:

1. State Key Laboratory of Medical Molecular Biology, Center for Bioinformatics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences,School of Basic Medicine Peking Union Medical College

2. State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China

3. National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China

Abstract

Abstract The identification of structural variations (SVs) and viral integrations in circulating tumor DNA (ctDNA) is a key step in precision oncology that may assist clinicians in treatment selection and monitoring. However, due to the short fragment size of ctDNA, it is challenging to accurately detect low-frequency SVs or SVs involving complex junctions in ctDNA sequencing data. Here, we describe Aperture, a new fast SV caller that applies a unique strategy of $k$-mer-based searching, binary label–based breakpoint detection and candidate clustering to detect SVs and viral integrations with high sensitivity, especially when junctions span repetitive regions. Aperture also employs a barcode-based filter to ensure specificity. Compared with existing methods, Aperture exhibits superior sensitivity and specificity in simulated, reference and real data tests, especially at low dilutions. Additionally, Aperture is able to predict sites of viral integration and identify complex SVs involving novel insertions and repetitive sequences in real patient data. Aperture is freely available at https://github.com/liuhc8/Aperture.

Funder

Chinese Academy of Meteorological Sciences

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3