Affiliation:
1. Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
2. School of Informatics, Xiamen University, Xiamen, China
Abstract
Abstract
The emergence of single cell RNA sequencing has facilitated the studied of genomes, transcriptomes and proteomes. As available single-cell RNA-seq datasets are released continuously, one of the major challenges facing traditional RNA analysis tools is the high-dimensional, high-sparsity, high-noise and large-scale characteristics of single-cell RNA-seq data. Deep learning technologies match the characteristics of single-cell RNA-seq data perfectly and offer unprecedented promise. Here, we give a systematic review for most popular single-cell RNA-seq analysis methods and tools based on deep learning models, involving the procedures of data preprocessing (quality control, normalization, data correction, dimensionality reduction and data visualization) and clustering task for downstream analysis. We further evaluate the deep model-based analysis methods of data correction and clustering quantitatively on 11 gold standard datasets. Moreover, we discuss the data preferences of these methods and their limitations, and give some suggestions and guidance for users to select appropriate methods and tools.
Funder
National Natural Science Foundation of China
Sichuan Provincial Science Fund for Distinguished Young Scholars
Special Science Foundation of Quzhou
Publisher
Oxford University Press (OUP)
Subject
Molecular Biology,Information Systems
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献