A comprehensive survey of dimensionality reduction and clustering methods for single-cell and spatial transcriptomics data

Author:

Sun Yidi1,Kong Lingling1,Huang Jiayi1,Deng Hongyan1,Bian Xinling1,Li Xingfeng1,Cui Feifei1ORCID,Dou Lijun2,Cao Chen3,Zou Quan45ORCID,Zhang Zilong1ORCID

Affiliation:

1. School of Computer Science and Technology, Hainan University , Haikou 570228 , China

2. Genomic Medicine Institute, Lerner Research Institute , Cleveland, OH 44106 , United States

3. School of Biomedical Engineering and Informatics, Nanjing Medical University , Nanjing 210029 , China

4. Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China , Chengdu 610054 , China

5. Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China , Quzhou 324000 , China

Abstract

Abstract In recent years, the application of single-cell transcriptomics and spatial transcriptomics analysis techniques has become increasingly widespread. Whether dealing with single-cell transcriptomic or spatial transcriptomic data, dimensionality reduction and clustering are indispensable. Both single-cell and spatial transcriptomic data are often high-dimensional, making the analysis and visualization of such data challenging. Through dimensionality reduction, it becomes possible to visualize the data in a lower-dimensional space, allowing for the observation of relationships and differences between cell subpopulations. Clustering enables the grouping of similar cells into the same cluster, aiding in the identification of distinct cell subpopulations and revealing cellular diversity, providing guidance for downstream analyses. In this review, we systematically summarized the most widely recognized algorithms employed for the dimensionality reduction and clustering analysis of single-cell transcriptomic and spatial transcriptomic data. This endeavor provides valuable insights and ideas that can contribute to the development of novel tools in this rapidly evolving field.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3