Affiliation:
1. South China University of Technology, Guangzhou 510006, China
2. Shanghai Jiao Tong University School of Medicine and Shanghai University of Traditional Chinese Medicine, Guangzhou 510006, China
3. Beijing University of Chemical Technology, Guangzhou 510006, China
Abstract
Abstract
Three-dimensional (3D) molecular similarity, one major ligand-based virtual screening (VS) method, has been widely used in the drug discovery process. A variety of 3D molecular similarity tools have been developed in recent decades. In this study, we assessed a panel of 15 3D molecular similarity programs against the DUD-E and LIT-PCBA datasets, including commercial ROCS and Phase, in terms of screening power and scaffold-hopping power. The results revealed that (1) SHAFTS, LS-align, Phase Shape_Pharm and LIGSIFT showed the best VS capability in terms of screening power. Some 3D similarity tools available to academia can yield relatively better VS performance than commercial ROCS and Phase software. (2) Current 3D similarity VS tools exhibit a considerable ability to capture actives with new chemotypes in terms of scaffold hopping. (3) Multiple conformers relative to single conformations will generally improve VS performance for most 3D similarity tools, with marginal improvement observed in area under the receiving operator characteristic curve values, enrichment factor in the top 1% and hit rate in the top 1% values showed larger improvement. Moreover, redundancy and complementarity analyses of hit lists from different query seeds and different 3D similarity VS tools showed that the combination of different query seeds and/or different 3D similarity tools in VS campaigns retrieved more (and more diverse) active molecules. These findings provide useful information for guiding choices of the optimal 3D molecular similarity tools for VS practices and designing possible combination strategies to discover more diverse active compounds.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Guangdong Province
Publisher
Oxford University Press (OUP)
Subject
Molecular Biology,Information Systems
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献