Affiliation:
1. Biruni University - Department of Pharmaceutical Chemistry, Istanbul, Turkey
2. Martin-Luther University of Halle-Wittenberg - Institute of Pharmacy, Halle (Saale), Germany
Abstract
:
Biomedical discovery has been reshaped upon the exploding digitization of data
which can be retrieved from a number of sources, ranging from clinical pharmacology to
cheminformatics-driven databases. Now, supercomputing platforms and publicly available
resources such as biological, physicochemical, and clinical data, can all be integrated to construct
a detailed map of signaling pathways and drug mechanisms of action in relation to drug
candidates. Recent advancements in computer-aided data mining have facilitated analyses of
‘big data’ approaches and the discovery of new indications for pre-existing drugs has been
accelerated. Linking gene-phenotype associations to predict novel drug-disease signatures or
incorporating molecular structure information of drugs and protein targets with other kinds of
data derived from systems biology provide great potential to accelerate drug discovery and
improve the success of drug repurposing attempts. In this review, we highlight commonly
used computational drug repurposing strategies, including bioinformatics and cheminformatics
tools, to integrate large-scale data emerging from the systems biology, and consider both
the challenges and opportunities of using this approach. Moreover, we provide successful examples
and case studies that combined various in silico drug-repurposing strategies to predict
potential novel uses for known therapeutics.
Publisher
Bentham Science Publishers Ltd.
Subject
Pharmacology,Molecular Medicine,Drug Discovery,Biochemistry,Organic Chemistry
Cited by
62 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献