Pan-cancer application of a lung-adenocarcinoma-derived gene-expression-based prognostic predictor

Author:

Nacer Deborah F1,Liljedahl Helena1,Karlsson Anna1,Lindgren David1,Staaf Johan1

Affiliation:

1. Lund University, Sweden

Abstract

Abstract Gene-expression profiling can be used to classify human tumors into molecular subtypes or risk groups, representing potential future clinical tools for treatment prediction and prognostication. However, it is less well-known how prognostic gene signatures derived in one malignancy perform in a pan-cancer context. In this study, a gene-rule-based single sample predictor (SSP) called classifier for lung adenocarcinoma molecular subtypes (CLAMS) associated with proliferation was tested in almost 15 000 samples from 32 cancer types to classify samples into better or worse prognosis. Of the 14 malignancies that presented both CLAMS classes in sufficient numbers, survival outcomes were significantly different for breast, brain, kidney and liver cancer. Patients with samples classified as better prognosis by CLAMS were generally of lower tumor grade and disease stage, and had improved prognosis according to other type-specific classifications (e.g. PAM50 for breast cancer). In all, 99.1% of non-lung cancer cases classified as better outcome by CLAMS were comprised within the range of proliferation scores of lung adenocarcinoma cases with a predicted better prognosis by CLAMS. This finding demonstrates the potential of tuning SSPs to identify specific levels of for instance tumor proliferation or other transcriptional programs through predictor training. Together, pan-cancer studies such as this may take us one step closer to understanding how gene-expression-based SSPs act, which gene-expression programs might be important in different malignancies, and how to derive tools useful for prognostication that are efficient across organs.

Funder

Oxford University Hospitals National Health Service Trust

Gustav V:s Jubilee Foundation

Lund University

Mrs. Berta Kamprad Foundation

Swedish Cancer Society

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3