Integrative single-cell analysis: dissecting CD8 + memory cell roles in LUAD and COVID-19 via eQTLs and Mendelian Randomization

Author:

Wu Jintao,Mao Xiaocheng,Liu Xiaohua,Mao Junying,Yang Xianxin,zhou Xiangwu,Tianzhu Lu,Ji Yulong,Li Zhao,Xu HuijuanORCID

Abstract

AbstractLung adenocarcinoma exhibits high incidence and mortality rates, presenting a significant health concern. Concurrently, the COVID-19 pandemic has emerged as a grave global public health challenge. Existing literature suggests that T cells, pivotal components of cellular immunity, are integral to both antiviral and antitumor responses. Yet, the nuanced alterations and consequent functions of T cells across diverse disease states have not been comprehensively elucidated. We gathered transcriptomic data of peripheral blood mononuclear cells from lung adenocarcinoma patients, COVID-19 patients, and healthy controls. We followed a standardized analytical approach for quality assurance, batch effect adjustments, and preliminary data processing. We discerned distinct T cell subsets and conducted differential gene expression analysis. Potential key genes and pathways were inferred from GO and Pathway enrichment analyses. Additionally, we implemented Mendelian randomization to probe the potential links between pivotal genes and lung adenocarcinoma susceptibility. Our findings underscored a notable reduction in mature CD8 + central memory T cells in both lung adenocarcinoma and COVID-19 cohorts relative to the control group. Notably, the downregulation of specific genes, such as TRGV9, could impede the immunological efficacy of CD8 + T cells. Comprehensive multi-omics assessment highlighted genetic aberrations in genes, including TRGV9, correlating with heightened lung adenocarcinoma risk. Through rigorous single-cell transcriptomic analyses, this investigation meticulously delineated variations in T cell subsets across different pathological states and extrapolated key regulatory genes via an integrated multi-omics approach, establishing a robust groundwork for future functional inquiries. This study furnishes valuable perspectives into the etiology of multifaceted diseases and augments the progression of precision medicine.

Funder

Traditional Chinese Medicine Science Research Fund of Jiangxi Province

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3