Unsupervised and self-supervised deep learning approaches for biomedical text mining

Author:

Nadif Mohamed1,Role François1

Affiliation:

1. Université de Paris, CNRS, Centre Borelli, France

Abstract

Abstract Biomedical scientific literature is growing at a very rapid pace, which makes increasingly difficult for human experts to spot the most relevant results hidden in the papers. Automatized information extraction tools based on text mining techniques are therefore needed to assist them in this task. In the last few years, deep neural networks-based techniques have significantly contributed to advance the state-of-the-art in this research area. Although the contribution to this progress made by supervised methods is relatively well-known, this is less so for other kinds of learning, namely unsupervised and self-supervised learning. Unsupervised learning is a kind of learning that does not require the cost of creating labels, which is very useful in the exploratory stages of a biomedical study where agile techniques are needed to rapidly explore many paths. In particular, clustering techniques applied to biomedical text mining allow to gather large sets of documents into more manageable groups. Deep learning techniques have allowed to produce new clustering-friendly representations of the data. On the other hand, self-supervised learning is a kind of supervised learning where the labels do not have to be manually created by humans, but are automatically derived from relations found in the input texts. In combination with innovative network architectures (e.g. transformer-based architectures), self-supervised techniques have allowed to design increasingly effective vector-based word representations (word embeddings). We show in this survey how word representations obtained in this way have proven to successfully interact with common supervised modules (e.g. classification networks) to whose performance they greatly contribute.

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3