LLM-Powered Natural Language Text Processing for Ontology Enrichment

Author:

Mukanova Assel1ORCID,Milosz Marek2ORCID,Dauletkaliyeva Assem1,Nazyrova Aizhan13,Yelibayeva Gaziza3,Kuzin Dmitrii1,Kussepova Lazzat1

Affiliation:

1. Higher School of Information Technology and Engineering, Astana International University, 8 Kabanbay Batyr Av., Astana 010000, Kazakhstan

2. Department of Computer Science, Lublin University of Technology, 36B Nadbystrzycka Str., 20-618 Lublin, Poland

3. Faculty of Information Technologies, L.N. Gumilyov Eurasian National University, 2 Satpayev Str., Astana 010008, Kazakhstan

Abstract

This paper describes a method and technology for processing natural language texts and extracting data from the text that correspond to the semantics of an ontological model. The proposed method is distinguished by the use of a Large Language Model algorithm for text analysis. The extracted data are stored in an intermediate format, after which individuals and properties that reflect the specified semantics are programmatically created in the ontology. The proposed technology is implemented using the example of an ontological model that describes the geographical configuration and administrative–territorial division of Kazakhstan. The proposed method and technology can be applied in any subject areas for which ontological models have been developed. The results of the study can significantly improve the efficiency of using knowledge bases based on semantic networks by converting texts in natural languages into semantically linked data.

Funder

Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3