High-resolution transcription factor binding sites prediction improved performance and interpretability by deep learning method

Author:

Zhang Yongqing1,Wang Zixuan1,Zeng Yuanqi1,Zhou Jiliu1,Zou Quan2

Affiliation:

1. School of Computer Science, Chengdu University of Information Technology, 610225, Chengdu, China

2. Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, 610054, Chengdu, China

Abstract

Abstract Transcription factors (TFs) are essential proteins in regulating the spatiotemporal expression of genes. It is crucial to infer the potential transcription factor binding sites (TFBSs) with high resolution to promote biology and realize precision medicine. Recently, deep learning-based models have shown exemplary performance in the prediction of TFBSs at the base-pair level. However, the previous models fail to integrate nucleotide position information and semantic information without noisy responses. Thus, there is still room for improvement. Moreover, both the inner mechanism and prediction results of these models are challenging to interpret. To this end, the Deep Attentive Encoder-Decoder Neural Network (D-AEDNet) is developed to identify the location of TFs–DNA binding sites in DNA sequences. In particular, our model adopts Skip Architecture to leverage the nucleotide position information in the encoder and removes noisy responses in the information fusion process by Attention Gate. Simultaneously, the Transcription Factor Motif Discovery based on Sliding Window (TF-MoDSW), an approach to discover TFs–DNA binding motifs by utilizing the output of neural networks, is proposed to understand the biological meaning of the predicted result. On ChIP-exo datasets, experimental results show that D-AEDNet has better performance than competing methods. Besides, we authenticate that Attention Gate can improve the interpretability of our model by ways of visualization analysis. Furthermore, we confirm that ability of D-AEDNet to learn TFs–DNA binding motifs outperform the state-of-the-art methods and availability of TF-MoDSW to discover biological sequence motifs in TFs–DNA interaction by conducting experiment on ChIP-seq datasets.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Scientific Research Foundation for Education Department of Sichuan Province

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3