RBPMS regulates cardiomyocyte contraction and cardiac function through RNA alternative splicing

Author:

Gan Peiheng1ORCID,Wang Zhaoning12,Bezprozvannaya Svetlana1ORCID,McAnally John R1ORCID,Tan Wei1,Li Hui1,Bassel-Duby Rhonda1ORCID,Liu Ning1ORCID,Olson Eric N1ORCID

Affiliation:

1. Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center , 6000 Harry Hines Blvd., Dallas, TX 75390 , USA

2. Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine , La Jolla, CA 92093 , USA

Abstract

Abstract Aims RNA binding proteins play essential roles in mediating RNA splicing and are key post-transcriptional regulators in the heart. Our recent study demonstrated that RBPMS (RNA binding protein with multiple splicing) is crucial for cardiac development through modulating mRNA splicing, but little is known about its functions in the adult heart. In this study, we aim to characterize the post-natal cardiac function of Rbpms and its mechanism of action. Methods and results We generated a cardiac-specific knockout mouse line and found that cardiac-specific loss of Rbpms caused severe cardiomyocyte contractile defects, leading to dilated cardiomyopathy and early lethality in adult mice. We showed by proximity-dependent biotin identification assay and mass spectrometry that RBPMS associates with spliceosome factors and other RNA binding proteins, such as RBM20, that are important in cardiac function. We performed paired-end RNA sequencing and RT–PCR and found that RBPMS regulates mRNA alternative splicing of genes associated with sarcomere structure and function, such as Ttn, Pdlim5, and Nexn, generating new protein isoforms. Using a minigene splicing reporter assay, we determined that RBPMS regulates target gene splicing through recognizing tandem intronic CAC motifs. We also showed that RBPMS knockdown in human induced pluripotent stem cell-derived cardiomyocytes impaired cardiomyocyte contraction. Conclusion This study identifies RBPMS as an important regulator of cardiomyocyte contraction and cardiac function by modulating sarcomeric gene alternative splicing.

Funder

NIH

Fondation Leducq Transatlantic Networks of Excellence in Cardiovascular Research

Robert A. Welch Foundation

American Heart Association

Life Science Research Foundation

Publisher

Oxford University Press (OUP)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3