Evolutionary trajectory of diverse SARS-CoV-2 variants at the beginning of COVID-19 outbreak

Author:

Lv Jia-Xin1,Liu Xiang1,Pei Yuan-Yuan12,Song Zhi-Gang12,Chen Xiao3,Hu Shu-Jian1,She Jia-Lei2,Liu Yi2,Chen Yan-Mei1,Zhang Yong-Zhen1ORCID

Affiliation:

1. State Key Laboratory of Genetic Engineering, Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences and Human Phenome Institute, Fudan University , No. 2005 Songhu Road, Yangpu District, Shanghai 200438, China

2. Shanghai Public Health Clinical Center , No. 2901 Canglang Road, Jinshan District, Shanghai 210508, China

3. College of Marine Sciences, South China Agricultural University , No. 483 Wushan Road, Tianhe District, Guangzhou, Guangdong 510642, China

Abstract

Abstract Despite extensive scientific efforts directed toward the evolutionary trajectory of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in humans at the beginning of the COVID-19 epidemic, it remains unclear how the virus jumped into and evolved in humans so far. Herein, we recruited almost all adult coronavirus disease 2019 (COVID-19) cases appeared locally or imported from abroad during the first 8 months of the outbreak in Shanghai. From these patients, SARS-CoV-2 genomes occupying the important phylogenetic positions in the virus phylogeny were recovered. Phylogenetic and mutational landscape analyses of viral genomes recovered here and those collected in and outside of China revealed that all known SARS-CoV-2 variants exhibited the evolutionary continuity despite the co-circulation of multiple lineages during the early period of the epidemic. Various mutations have driven the rapid SARS-CoV-2 diversification, and some of them favor its better adaptation and circulation in humans, which may have determined the waxing and waning of various lineages.

Funder

Shanghai Rising-Star Program

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3