A disruptive clickable antibody design for the generation of antibody-drug conjugates

Author:

Rakotoarinoro Nathanaël12,Dyck Yan F K2,Krebs Simon K13,Assi Miriam-Kousso14,Parr Maria K2,Stech Marlitt1

Affiliation:

1. Institute for Cell Therapy and Immunology branch Bioanalytics and Bioprocesses , Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 14476 Potsdam-Golm , Germany

2. Institute of Pharmacy, Freie Universität Berlin , 14195 Berlin , Germany

3. Institute of Biotechnology, Technische Universität Berlin , 13355 Berlin , Germany

4. Department of Biotechnology, Hamburg University of Applied Sciences , 21033 Hamburg , Germany

Abstract

Abstract Background Antibody-drug conjugates are cancer therapeutics that combine specificity and toxicity. A highly cytotoxic drug is covalently attached to an antibody that directs it to cancer cells. The conjugation of the drug-linker to the antibody is a key point in research and development as well as in industrial production. The consensus is to conjugate the drug to a surface-exposed part of the antibody to ensure maximum conjugation efficiency. However, the hydrophobic nature of the majority of drugs used in antibody-drug conjugates leads to an increased hydrophobicity of the generated antibody-drug conjugates, resulting in higher liver clearance and decreased stability. Methods In contrast, we describe a non-conventional approach in which the drug is conjugated in a buried part of the antibody. To achieve this, a ready-to-click antibody design was created in which an azido-based non-canonical amino acid is introduced within the Fab cavity during antibody synthesis using nonsense suppression technology. The Fab cavity was preferred over the Fc cavity to circumvent issues related to cleavage of the IgG1 lower hinge region in the tumor microenvironment. Results This antibody design significantly increased the hydrophilicity of the generated antibody-drug conjugates compared to the current best-in-class designs based on non-canonical amino acids, while conjugation efficiency and functionality were maintained. The robustness of this native shielding effect and the versatility of this approach were also investigated. Conclusions This pioneer design may become a starting point for the improvement of antibody-drug conjugates and an option to consider for protecting drugs and linkers from unspecific interactions.

Funder

Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung

Freie Universität Berlin

Bundesministerium für Bildung und Forschung

Ministerium für Wissenschaft, Forschung und Kultur

Investitionsbank des Landes Brandenburg

Europäischer Fonds für regionale Entwicklung

Publisher

Oxford University Press (OUP)

Subject

Immunology,Immunology and Allergy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3