Long amplicon nanopore sequencing of Botrytis cinerea and other fungal species present in infected grapevine leaf samples

Author:

Baramidze Vladimer1,Sella Luca2,Japaridze Tamar1,Abashidze Nino1,Lamazoshvili Daviti1,Dzotsenidze Nino1,Tomashvili Giorgi3

Affiliation:

1. Department of Plant Protection, , Agricultural University of Georgia, Kakha Bendukidze University Campus , Tbilisi 0159, Georgia

2. Department of Land, Environment, Agriculture and Forestry, University of Padua , Padova, Italy

3. Department of Virology and Molecular Biology, National Center for Disease Control and Public Health (NCDC) , Tbilisi 0198, Georgia

Abstract

Abstract Botrytis cinerea is a well-known plant pathogen responsible for grey mould disease infecting more than 500 plant species. It is listed as the second most important plant pathogen scientifically and economically. Its impact is particularly severe in grapes since it affects both the yield of grape berries and the quality of wines. While various methods for detecting B. cinerea have been investigated, the application of Oxford Nanopore Technology (ONT) for complete ribosomal operon sequencing, which has proven effective in human and animal fungal research and diagnostics, has not yet been explored in grapevine (Vitis vinifera) disease research. In this study, we sequenced complete ribosomal operons (∼5.5 kb amplicons), which encompass the 18S, ITS1, 5.8S, ITS2, and 28S regions, from both pure cultures of B. cinerea and infected grapevine leaf samples. Minimap2, a sequence alignment tool integrated into the EPI2ME software, served as a taxonomy classifier, utilizing the custom reference database FRODO. The results demonstrate that B. cinerea was detectable when this pathogen was not the dominant fungal species in leaf samples. Additionally, the method facilitates host DNA-free sequencing and might have a good potential to distinguish other pathogenic and non-pathogenic fungal species hosted within grapevine’s infected leaves, such as Alternaria alternata, Saccharomyces cerevisiae, Saccharomyces boulardii, Mucor racemosus, and Ascochyta rabie. The sequences were uploaded to the NCBI database. Long amplicon sequencing method has the capacity to be broadened to other susceptible crops and pathogens, as a valuable tool for early grey rot detection and mycobiome research. Future large-scale studies are needed to overcome challenges, such as comprehensive reference databases for complete fungal ribosomal operons for grape mycobiome studies.

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3