Gene Set Enrichment Analysis of Selenium-Deficient and High-Selenium Rat Liver Transcript Expression and Comparison With Turkey Liver Expression

Author:

Sunde Roger A1

Affiliation:

1. Department of Nutritional Sciences, University of Wisconsin, Madison, WI, USA

Abstract

ABSTRACT Background Better biomarkers of selenium (Se) status and a better understanding of toxic Se biochemistry are needed to set safe dietary upper limits. In previous studies, differential expression (DE) of individual liver transcripts in rats and turkeys failed to identify a single transcript that was consistently and significantly (q < 0.05) altered by high Se. Objectives To evaluate the effect of Se status on rat liver transcript expression data at the level of gene sets, and to compare transcript expression in rats with that in turkeys to identify common regulated transcripts. Methods Gene set enrichment analysis (GSEA) was conducted on liver from weanling rats fed an Se-deficient basal diet (0.005 μg Se/g) supplemented with 0, 0.24 (Se-adequate), 2, or 5 μg Se/g diet as selenite for 28 d. In addition, transcript expression was compared with liver expression in turkeys fed 0, 0.4, 2, or 5 μg Se/g diet as selenite. Results Se deficiency significantly downregulated the rat selenoprotein gene set but also upregulated gene sets for a variety of pathways, processes, and disease states. GSEA of 2 compared with 0.24 μg Se/g found no significantly up- or downregulated gene sets, showing that 2 μg Se/g is not particularly toxic to the rat. GSEA analysis of 5 compared with 0.24 μg Se/g transcripts, however, found 27 significantly upregulated gene sets for a wide variety of conditions. Cross-species GSEA comparison of transcript expression, however, identified no common gene sets significantly and consistently regulated by high Se in rats and turkeys. In addition, comparison of individual marginally significant (unadjusted P < 0.05) DE transcripts between rats and turkeys also failed to find common transcripts. Conclusions The dramatic increase in significant liver transcript DE and GSEA gene sets in rats fed 5 compared with 2 μg Se/g clearly appears to be a biomarker for Se toxicity, albeit not Se-specific. These analyses, however, failed to identify specific transcripts or pathways, biological states, or processes that were directly linked with high Se status, strongly indicating that adaptation to high Se lies outside transcriptional regulation.

Funder

USDA

Wisconsin Alumni Foundation

Publisher

Oxford University Press (OUP)

Subject

Nutrition and Dietetics,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3