A New Approach Methodology (NAM) Based Assessment of Butylated hydroxytoluene (BHT) for Endocrine Disruption Potential

Author:

De Abrew K Nadira1,Natoli Ted2,Lester Cathy C3,Wang Xiaohong3,Shobair Mahmoud3,Subramanian Arvind2,Daston George P3

Affiliation:

1. Fabric and Home Care Innovation Center, The Procter & Gamble Company , Cincinnati, Ohio 45217, USA

2. Mason Business Center, The Procter & Gamble Company , Cincinnati, Ohio 45040, USA

3. Broad Institute of MIT and Harvard , Cambridge, Massachusetts 02142, USA

Abstract

Abstract Butylated hydroxytoluene (BHT) is a synthetic antioxidant widely used in many industrial sectors. BHT is a well-studied compound for which there are many favorable regulatory decisions. However, a recent opinion by the French Agency for Food, Environmental and Occupational Health and Safety (ANSES) hypothesizes a role for BHT in endocrine disruption (ANSES (2021). This opinion is based on observations in mostly rat studies where changes to thyroid physiology are observed. Enzymatic induction of Cytochrome P450-mediated thyroid hormone catabolism has been proposed as a mechanism for these observations, however, a causal relationship has not been proven. Other evidence proposed in the document includes a read across argument to butylated hydroxyanisole (BHA), another Community Rolling Action Plan (CoRAP)-listed substance with endocrine disruption concerns. We tested the hypothesis that BHT is an endocrine disruptor by using a Next Generation Risk Assessment (NGRA) method. Four different cell lines: A549, HCC1428, HepG2, and MCF7 were treated with BHT and a series of BHT analogs at 5 different concentrations, RNA was isolated from cell extracts and run on the L1000 gene array platform. A toxicogenomics-based assessment was performed by comparing BHT’s unique genomic signature to a large external database containing signatures of other compounds (including many known endocrine disruptors) to identify if any endocrine disruption-related modes of action (MoAs) are prevalent among BHT and other compounds with similar genomic signatures. In addition, we performed a toxicogenomics-based structure activity relationship (SAR) assessment of BHT and a series of structurally similar analogs to understand if endocrine disruption is a relevant MoA for chemicals that are considered suitable analogs to BHT using the P&G read across framework (Wu et al., 2010). Neither BHT nor any of its analogs connected to compounds that had endocrine activity for estrogens, androgens, thyroid, or steroidogenesis.

Publisher

Oxford University Press (OUP)

Subject

Toxicology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3