A tiered testing strategy based on in vitro phenotypic and transcriptomic data for selecting representative petroleum UVCBs for toxicity evaluation in vivo

Author:

Tsai Han-Hsuan Doris12ORCID,House John S3ORCID,Wright Fred A145,Chiu Weihsueh A12ORCID,Rusyn Ivan12

Affiliation:

1. Interdisciplinary Faculty of Toxicology , College Station, Texas 77843, USA

2. Department of Veterinary Physiology and Pharmacology, Texas A&M University , College Station, Texas 77843, USA

3. National Institute of Environmental Health Sciences , Research Triangle Park, North Carolina 27709, USA

4. Department of Statistics and Bioinformatics Research Center, North Carolina State University , Raleigh, North Carolina 27603, USA

5. Department of Biological Sciences and Bioinformatics Research Center, North Carolina State University , Raleigh, North Carolina 27603, USA

Abstract

Abstract Hazard evaluation of substances of “unknown or variable composition, complex reaction products and biological materials” (UVCBs) remains a major challenge in regulatory science because their chemical composition is difficult to ascertain. Petroleum substances are representative UVCBs and human cell-based data have been previously used to substantiate their groupings for regulatory submissions. We hypothesized that a combination of phenotypic and transcriptomic data could be integrated to make decisions as to selection of group-representative worst-case petroleum UVCBs for subsequent toxicity evaluation in vivo. We used data obtained from 141 substances from 16 manufacturing categories previously tested in 6 human cell types (induced pluripotent stem cell [iPSC]-derived hepatocytes, cardiomyocytes, neurons, and endothelial cells, and MCF7 and A375 cell lines). Benchmark doses for gene-substance combinations were calculated, and both transcriptomic and phenotype-derived points of departure (PODs) were obtained. Correlation analysis and machine learning were used to assess associations between phenotypic and transcriptional PODs and to determine the most informative cell types and assays, thus representing a cost-effective integrated testing strategy. We found that 2 cell types—iPSC-derived-hepatocytes and -cardiomyocytes—contributed the most informative and protective PODs and may be used to inform selection of representative petroleum UVCBs for further toxicity evaluation in vivo. Overall, although the use of new approach methodologies to prioritize UVCBs has not been widely adopted, our study proposes a tiered testing strategy based on iPSC-derived hepatocytes and cardiomyocytes to inform selection of representative worst-case petroleum UVCBs from each manufacturing category for further toxicity evaluation in vivo.

Funder

National Institute of Environmental Health Sciences

Intramural Research Program

Publisher

Oxford University Press (OUP)

Subject

Toxicology

Reference76 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3