Targeted Pathway-based In Vivo Testing Using Thyroperoxidase Inhibition to Evaluate Plasma Thyroxine as a Surrogate Metric of Metamorphic Success in Model Amphibian Xenopus laevis

Author:

Haselman Jonathan T1ORCID,Olker Jennifer H1ORCID,Kosian Patricia A1,Korte Joseph J1,Swintek Joseph A2,Denny Jeffrey S1,Nichols John W1,Tietge Joseph E1,Hornung Michael W1ORCID,Degitz Sigmund J1

Affiliation:

1. Great Lakes Toxicology and Ecology Division, U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Duluth, Minnesota 55804

2. Badger Technical Services, Great Lakes Toxicology and Ecology Division, U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Duluth, Minnesota 55804

Abstract

Abstract Chemical safety evaluation is in the midst of a transition from traditional whole-animal toxicity testing to molecular pathway-based in vitro assays and in silico modeling. However, to facilitate the shift in reliance on apical effects for risk assessment to predictive surrogate metrics having characterized linkages to chemical mechanisms of action, targeted in vivo testing is necessary to establish these predictive relationships. In this study, we demonstrate a means to predict thyroid-related metamorphic success in the model amphibian Xenopus laevis using relevant biochemical measurements during early prometamorphosis. The adverse outcome pathway for thyroperoxidase inhibition leading to altered amphibian metamorphosis was used to inform a pathway-based in vivo study design that generated response-response relationships. These causal relationships were used to develop Bayesian probabilistic network models that mathematically determine conditional dependencies between biochemical nodes and support the predictive capability of the biochemical profiles. Plasma thyroxine concentrations were the most predictive of metamorphic success with improved predictivity when thyroid gland sodium-iodide symporter gene expression levels (a compensatory response) were used in conjunction with plasma thyroxine as an additional regressor. Although thyroid-mediated amphibian metamorphosis has been studied for decades, this is the first time a predictive relationship has been characterized between plasma thyroxine and metamorphic success. Linking these types of biochemical surrogate metrics to apical outcomes is vital to facilitate the transition to the new paradigm of chemical safety assessments.

Funder

U.S. Environmental Protection Agency

Publisher

Oxford University Press (OUP)

Subject

Toxicology

Reference68 articles.

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3