Affiliation:
1. US Geological Survey Eastern Ecological Science Center Laurel Maryland USA
2. FMC Corporation Newark Delaware USA
3. College of Veterinary Medicine University of Illinois at Urbana Champaign Illinois USA
4. UR ICE‐VETAGRO‐SUP Université de Lyon Lyon France
5. US Environmental Protection Agency Washington District of Columbia USA
6. Environment and Climate Change Canada Delta British Columbia Canada
7. Environment and Climate Change Canada Dartmouth Nova Scotia Canada
8. Ramboll Beachwood Ohio USA
9. Simon Fraser University Burnaby British Columbia Canada
10. IREC (CSIC‐UCLM) Ciudad Real Spain
11. Arcadis US Inc. Highlands Ranch Colorado USA
12. Environment and Climate Change Canada Ottawa Ontario Canada
13. Towson University Towson Maryland USA
Abstract
AbstractDespite advances in toxicity testing and the development of new approach methodologies (NAMs) for hazard assessment, the ecological risk assessment (ERA) framework for terrestrial wildlife (i.e., air‐breathing amphibians, reptiles, birds, and mammals) has remained unchanged for decades. While survival, growth, and reproductive endpoints derived from whole‐animal toxicity tests are central to hazard assessment, nonstandard measures of biological effects at multiple levels of biological organization (e.g., molecular, cellular, tissue, organ, organism, population, community, ecosystem) have the potential to enhance the relevance of prospective and retrospective wildlife ERAs. Other factors (e.g., indirect effects of contaminants on food supplies and infectious disease processes) are influenced by toxicants at individual, population, and community levels, and need to be factored into chemically based risk assessments to enhance the “eco” component of ERAs. Regulatory and logistical challenges often relegate such nonstandard endpoints and indirect effects to postregistration evaluations of pesticides and industrial chemicals and contaminated site evaluations. While NAMs are being developed, to date, their applications in ERAs focused on wildlife have been limited. No single magic tool or model will address all uncertainties in hazard assessment. Modernizing wildlife ERAs will likely entail combinations of laboratory‐ and field‐derived data at multiple levels of biological organization, knowledge collection solutions (e.g., systematic review, adverse outcome pathway frameworks), and inferential methods that facilitate integrations and risk estimations focused on species, populations, interspecific extrapolations, and ecosystem services modeling, with less dependence on whole‐animal data and simple hazard ratios. Integr Environ Assess Manag 2023;00:1–24. © 2023 His Majesty the King in Right of Canada and The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC). Reproduced with the permission of the Minister of Environment and Climate Change Canada. This article has been contributed to by US Government employees and their work is in the public domain in the USA.
Subject
General Environmental Science,General Medicine,Geography, Planning and Development
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献