Liver Toxicity Observed With Lorlatinib When Combined With Strong CYP3A Inducers: Evaluation of Cynomolgus Monkey as a Nonclinical Model for Assessing the Mechanism of Combinational Toxicity

Author:

Hu Wenyue1,Lettiere Daniel2ORCID,Tse Susanna3,Johnson Theodore R4,Biddle Kathleen E2,Thibault Stephane1,Palazzi Xavier2,Chen Joseph5ORCID,Pithavala Yazdi K5,Finkelstein Martin1

Affiliation:

1. Drug Safety Research and Development, Pfizer Inc, San Diego, California 92121, USA

2. Drug Safety Research and Development, Dynamics & Metabolism, Pfizer Inc, Groton, Connecticut 06340, USA

3. Pharmacokinetics, Dynamics & Metabolism, Pfizer Inc, Groton, Connecticut 06340, USA

4. Pharmacokinetics, Dynamics & Metabolism, San Diego, California 92121, USA

5. Clinical Pharmacology, Pfizer Inc, San Diego, California 92121, USA

Abstract

Abstract Lorlatinib is a potent small-molecule anaplastic lymphoma kinase inhibitor approved for the treatment of patients with nonsmall cell lung cancer. In a drug-drug interaction study in healthy human participants, liver enzyme elevations were observed when a single 100 mg dose of lorlatinib was administered after multiple doses of rifampin, a strong cytochrome P450 (CYP) 3A inducer and a pregnane X receptor (PXR) agonist. A series of in vitro and in vivo studies were conducted to evaluate potential mechanisms for the observed clinical toxicity. To investigate the involvement of CYP3A and/or PXR in the observed liver toxicity, studies were conducted in cynomolgus monkeys administered lorlatinib alone or with coadministration of multiple doses of known CYP3A inducers that are predominantly PXR agonists (rifampin, St. John’s wort) or predominantly constitutive androstane receptor agonists (carbamazepine, phenytoin) and a net CYP3A inhibitory PXR agonist (ritonavir). Results from the investigative studies identified cynomolgus monkeys as a pharmacologically relevant nonclinical model, which recapitulated the elevated liver function test results observed in humans. Furthermore, liver toxicity was only observed in this model when lorlatinib was coadministered with strong CYP3A inducers, and the effects were not restricted to, or exclusively dependent upon, a PXR activation mechanism. These results generated mechanistic insights on the liver enzyme elevations observed in the clinical drug-drug interaction study and provided guidance on appropriate product safety label for lorlatinib.

Publisher

Oxford University Press (OUP)

Subject

Toxicology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3