Can We Panelize Seizure?

Author:

Roberts Ruth12ORCID,Authier Simon3,Mellon R Daniel4,Morton Michael1,Suzuki Ikuro5,Tjalkens Ronald B6,Valentin Jean-Pierre7,Pierson Jennifer B8ORCID

Affiliation:

1. ApconiX, Alderley Park, SK10 4TG, UK

2. University of Birmingham, B15 2SD, UK

3. Charles River Laboratories, Quebec, H7V 4B3, Canada

4. US Food and Drug Administration, Silver Spring, Maryland 20993

5. Tohoku Institute of Technology, Sendai, 980-8577, Japan

6. Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523

7. UCB Biopharma SRL, Early Solutions, Development Science, Investigative Toxicology, Chemin du Foriest, B-1420, Braine-l’Alleud, Belgium

8. Health and Environmental Sciences Institute, Washington, District of Columbia 20005

Abstract

Abstract Seizure liability remains a significant cause of attrition in drug discovery and development, leading to loss of competitiveness, delays, and increased costs. Current detection methods rely on observations made in in vivo studies intended to support clinical trials, such as tremors or other abnormal movements. These signs could be missed or misinterpreted; thus, definitive confirmation of drug-induced seizure requires a follow-up electroencephalogram study. There has been progress in in vivo detection of seizure using automated video systems that record and analyze animal movements. Nonetheless, it would be preferable to have earlier prediction of seizurogenic risk that could be used to eliminate liabilities early in discovery while there are options for medicinal chemists making potential new drugs. Attrition due to cardiac adverse events has benefited from routine early screening; could we reduce attrition due to seizure using a similar approach? Specifically, microelectrode arrays could be used to detect potential seizurogenic signals in stem-cell-derived neurons. In addition, there is clear evidence implicating neuronal voltage-gated and ligand-gated ion channels, GPCRs and transporters in seizure. Interactions with surrounding glial cells during states of stress or inflammation can also modulate ion channel function in neurons, adding to the challenge of seizure prediction. It is timely to evaluate the opportunity to develop an in vitro assessment of seizure linked to a panel of ion channel assays that predict seizure, with the aim of influencing structure-activity relationship at the design stage and eliminating compounds predicted to be associated with pro-seizurogenic state.

Funder

NIH

Publisher

Oxford University Press (OUP)

Subject

Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3